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Goal: Enhance vision-based state estimation in multi-UAV systems by exploiting visual feature information during trajectory planning to maintain reliable localization.
Approach: (a) Fisher information-based trajectory evaluation to favor motion that improves expected localization accuracy.

(b) Feature map-based frame alignment to correct relative vision drift and maintain a consistent shared map among agents.
(c) A decentralized planning framework that incorporates both individual feature visibility and covisible landmarks when selecting trajectories.
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* VIO drift accumulates over time due to IMU noise and imperfect feature * Each agent runs a local VIO estimator to generate states and visual features. * Use a Fisher information-based metric to evaluate the expected information gain
tracking, leading to degraded localization in long-duration operations. * Agents periodically exchange local maps and align covisible features to form along each candidate trajectory.
* Feature visibility is highly uneven in realistic environments; entering a consistent shared feature map. * Prior information is constructed following [2], representing the contribution from
feature-sparse regions can quickly lead to estimator degradation or failure. * The planner samples trajectory candidates, evaluates a combined reward, independent VIO feature tracks.
* Covisible features observed across agents provide strong geometric and selects trajectories based on shared feature map. * Shared measurement information is derived from the frame alignment least-
constraints that can be exploited to correct relative drift and maintain a | Planning Module squares formulation, capturing inter-agent covisibility.
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trajectory is collision-free and dynamically feasible and is chosen via , , , ,
sampling-based real-time optimization [1]. * Fuse feature observations from multiple UAVs into a shared feature map in  Two UAVs hovered with injected translational drift (0.5 m) to test the alignment
the consensus world frame to mitigate independent VIO drift. module. The correction reduced inter-agent distance error by ~60%.
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