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Abstract— Multi-agent UAV systems are well-suited for large-
scale data collection and transportation, though navigation in
unstructured, GPS-denied environments remains challenging.
Vision-based navigation enables operation without external
infrastructure, but the uncertainty in state estimation limits
its reliability in multi-agent settings. We propose a trajectory
planning framework that incorporates estimator uncertainty
by exploiting visual feature observations between agents. The
framework maintains a coherent shared map through multi-
agent frame alignment to prevent independent vision drift, and
employs a perception-aware reward that favors trajectories
with stronger feature visibility and cross-agent redundancy.
Flight data from a controlled two-UAV experiment demonstrate
that our alignment module can effectively reduce relative
distance error, validating its role in maintaining inter-agent
consistency. Simulations show that perception-aware rewards
improve feature visibility and coordination while maintaining
goal-reaching performance.

I. INTRODUCTION

Uncrewed aerial vehicle (UAV) swarms provide enhanced
capabilities for applications such as structural inspection,
visual monitoring, and package delivery, where coordinated
autonomy surpasses the performance of individual vehi-
cles [1]. For such deployments to succeed, UAVs must
maintain accurate state estimation and plan trajectories that
ensure both efficiency and safety, even in GPS-denied or un-
structured environments. Visual-inertial odometry (VIO) [2]
has emerged as a practical solution in these scenarios, yet
drift from IMU noise and feature-tracking errors remains a
major challenge for reliable multi-agent operation.

Multi-agent trajectory planning for UAV systems [3]-[6]
has been extensively studied in recent years, with a primary
focus on enabling vehicles to avoid obstacles while coor-
dinating and communicating within the swarm. However,
most of this work assumes accurate localization and does
not explicitly account for the uncertainty of vision-based
estimators during flight. This limitation hinders deployment
in settings where feature quality, visibility, and collectively
bounded vision drifts between agents are critical to main-
taining accurate mutual state estimates across agents.

In this work, we propose a trajectory planning frame-
work that explicitly incorporates feature-based estimator
uncertainty into the multi-agent planning process. Our main
contributions are:

1) a trajectory planning framework that enables joint
planning within a shared feature map across agents,
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Fig. 1: Tllustration of the multi-agent perception-aware tra-
jectory optimization problem. The proposed framework fuses
feature observations into a consistent shared map. Agent @
selects its trajectory (dashed lines) from a set of candidates
based on predicted information gain, while accounting for
the current planned trajectory of agent j (purple line).
This planning step is performed iteratively, with each agent
updating its trajectory based on the latest plan of the other,
resulting in joint optimization over time.

2) a feature map—based frame alignment update to miti-
gate independent vision drift between agents, leading
to a consistent shared map for planning,

3) a perception-aware reward function that incorporates
both the predicted visibility of features and the covis-
ibility of shared features between agents.

The remainder of this paper is organized as follows.
Section II reviews the relevant literature and highlights
the novelty of our proposed method. Section III outlines
the problem setup and assumptions. Section IV details the
proposed methods, including the feature map—based frame
alignment update, objective function design, and trajectory
selection. Section V presents simulation results that demon-
strate the effectiveness of the proposed framework.

II. RELATED WORKS
A. Vision-based navigation for UAVs

Vision-based navigation offers a robust alternative for
UAV localization by avoiding dependence on external posi-
tioning infrastructure and high-cost ranging sensors, making
it adaptable across different environments. For visual-inertial
odometry (VIO), widely adopted methods include Open-
VINS [7], which uses the multi-state constraint Kalman filter
(MSCKEF) [8] for computationally efficient state estimation;
OKVIS [9], which performs sliding-window optimization
over past states and landmarks; and VINS-Mono [10], which
applies factor graph optimization to achieve high-accuracy
pose estimation. For purely visual SLAM, ORB-SLAM [11]
remains a popular choice due to its reliable feature track-
ing and loop closure capabilities. These methods, whether



filtering- or optimization-based, achieve accurate localization
by extracting and tracking visual features from the environ-
ment. Our approach exploits 3D feature maps for planning,
which are inherently present in all of these widely used
methods. In filter-based methods such as MSCKF, where
3D landmarks are not explicitly maintained in the state,
they can be reconstructed from the estimated state with little
computational cost.

In recent years, collaborative vision-based localization
methods have been introduced for both filtering-based [12]
and optimization-based approaches [13], which leverage
common observations of visual features. However, these
methods typically require the exchange of 2D feature tracks
across agents, which can be costly in terms of communi-
cation bandwidth and imply a more centralized design. Our
proposed framework introduces motion primitives that are
compatible with such algorithms but supports a decentralized
formulation, as it does not rely on raw data sharing or tightly
coupled multi-agent localization.

B. Single-agent perception-based planning

Single-agent trajectory planning has been widely stud-
ied, and several works highlight the importance of active
perception by introducing quantitative metrics for trajec-
tory selection. Perception-aware planning for single UAVs
was introduced in [14], while [15] further incorporated a
model of anisotropic feature uncertainty caused by motion
blur and provided empirical evidence of its effectiveness.
These algorithms improve estimation robustness by steering
vehicles toward feature-rich areas. More recently, [16] ad-
dressed the inverse problem, aiming to minimize mapping
error rather than localization uncertainty to improve pho-
togrammetry. Building upon the information-based trajectory
costs proposed in [14], [15], our work extends perception-
aware planning to multi-agent systems by explicitly modeling
information gain from covisible features across agents.

In addition, we introduce a decentralized asynchronous
planning framework that fuses feature maps through pairwise
alignment of commonly observed features between agents,
thereby coupling and bounding their vision drift, required for
reliable multi-agent coordination. Our formulation enables
consistent feature sharing, providing a basis for extending
information-based perception-aware planning to decentral-
ized multi-agent settings.

C. Multi-agent planning for UAVs

There has been growing progress in multi-UAV trajectory
planning and the integration of sensor information [3]. Given
the limitations of onboard computation, decentralized and
asynchronous online planning is required for UAV swarms
to operate safely and autonomously. For example, EGO-
Swarm [4] is an online replanning algorithm based on depth
images that enables UAVs to collaboratively avoid obstacles
while efficiently advancing toward their goals. MADER [5]
provides safety guarantees in decentralized, asynchronous
planning, though at the cost of higher computational load.
SWIFT [6] adopts a one-step learning-based approach to

TABLE I: Notation summary.

Symbol Meaning
v={1,...,N} Set of N agents in communication.
ECVYXV Set.(.)f constraints for agents with
covisible features.
W List of landmark positions observed

by all agents in V in world frame W.

B B B List of landmark positions observed
P = {pi,i‘ e ,p“lm} by agent i, expressed in agent ’s
body frame
List of features observed by both

'Pgi = {pg’fl e ,pgfmij} agent ¢ and j, expressed in agent 4’s

body frame
RWB: WB; Transformation from agent i’s frame
W B;
TV = = ol 1 to the world frame.
TB;W Transformation from the world frame
to agent 4’s body frame.
& = Pi Error in estimated vehicle pose
Pi
3 Covariance of pose perturbation &;
5 Covariance of 3D feature measure-
me ments in frame B;
S(-) € R3%3 Skew-symmetric matrix

Minimum-jerk trajectory primitive
(position, velocity, acceleration)

L(t) = [s(t), v(t), a(t)]

n Candidate trajectories generated for
(Tt} ! g

agent ¢
sa,i Goal point for agent ¢
D; Depth image taken by agent %
Flree Unoccupied space in 3D
Ukeasible Set of feasible control input
f() Normalized thrust
w(t) Body rates
A+ Fisher information at sampled pose T
T Planning duration

achieve similar capabilities with reduced complexity, making
it lightweight and feasible for UAV fleet coordination. How-
ever, these algorithms do not explicitly address localization
errors through planning, since trajectory evaluation is not
based on estimator performance.

Few works in multi-agent trajectory planning explicitly
consider localization uncertainty arising from perception
quality. The most closely related work is [17], which in-
troduces localization uncertainty into multi-agent planning.
Their formulation, however, models uncertainty indirectly
by propagating field-of-view—based uncertainties of detected
objects, rather than leveraging the visual feature information
that directly governs VIO performance. In contrast, our
framework explicitly incorporates feature-tracking—induced
localization uncertainty, enabling trajectory selection that
proactively improves state estimation.

III. PROBLEM SETUP

We consider the perception-aware planning problem for
multiple UAVs, with the objective of improving overall state
estimation performance. An illustration with two agents is
shown in Fig. 1. Agent 7 seeks to progress toward its



goal point sg; € R3, where bold symbols denote vectors
and the subscript G, indicates the goal position of agent
1 in the world frame. During flight, the agent performs
state estimation using vision-based methods such as those
outlined in Section II-A. These methods output an estimated
pose TV 5 € SE(3) with its associated covariance, where
the tilde denotes an estimated (rather than true) quantity.
Here, W denotes the world frame and B; denotes the body
frame of agent 7. For simplicity, we omit the intermediate
transformation between each body and its onboard camera
frame. Each agent also maintains a local 3D feature map
75? = {ﬁf{, . ,ﬁf;"m} expressed in its body frame B; and
reconstructed from a short history of visual observations. At
discrete communication times, these estimated quantities can
be shared across agents.

Upon receiving shared information, each agent performs
a feature-based alignment step (Section IV-A), by fusing
received features into a unified map which anchors the
relative localization between agents, leading to a locally
consistent and shared vision drift. The planning problem is
then to select a trajectory T';(¢) = [s;(t), v;(t), a;(t)] that
advances toward s¢ ; while enhancing expected localization
quality, subject to safety and input feasibility. This problem
is formulated as

arg {_‘Il?t))( kgoal Rgoal,i + kpercRperc,i (1)
st 8i(t) € Xiee, VE€1[0,T], )
fi (t)ywv(t) € ufeasiblea Vit € [Oa T] (3)

The objective (1) combines the goal progress reward
Rooa,; and perception-aware reward Rper;, weighted by
user-defined scalar weights Kgoa and Kper. Constraint (2)
enforces that the trajectory remains in the collision-free space
Xiree, and (3) enforces that the normalized thrust f;(¢) and
body rates w;(t) associated with the candidate trajectory
lie within the feasible input set Ue,sible- Each trajectory is
defined over a finite time horizon 0 < ¢t < T, where T" > 0
denotes the trajectory duration. The value of T" may be fixed
or sampled during trajectory generation.

This problem can be solved in real time via a sampling-
based approach (Section IV-B). Candidate trajectories are
evaluated using (1), with the computation of the reward terms
detailed in Section IV-C, and the highest-reward trajectory
satisfying the constraints is selected. To evaluate Ryere, we
sample a finite set of poses along each candidate trajectory
and assume that the latest planned trajectories of neighboring
agents are known through communication, enabling predic-
tion of future visible and covisible features. Shared trajec-
tories could also be leveraged for formation or coordination
objectives, which are beyond the scope of the present work.
Fig. 2 illustrates the overall system architecture, highlighting
the data flow and key modules.

IV. PROPOSED PLANNING FRAMEWORK
A. Feature-based frame alignment

Evaluating the cost in (1) requires access to ’PW, a
feature map in the consensus world frame containing unique
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Fig. 2: Software architecture of the proposed framework.
Each agent runs a local VIO estimator to generate states and
visual features. These are shared among agents and covisible
features are aligned producing a unified map. The planner
then uses this map with trajectory information to sample
candidates, evaluate rewards, check feasibility, and select the
best trajectory.

landmarks. To enable perception-aware planning, this map
must be constructed by fusing observations shared among
all agents in the communication set V. We assume that the
system 1is time-synchronized, so that the covisible features
being fused are observed at the same instant across agents.
This section introduces the proposed alignment algorithm,
which formulates the fusion as an optimization problem that
enforces pairwise constraints from these covisible features.

Given the sets of features observed by two communicating
agents ¢ and j, we first identify the commonly observed
features using descriptor matching. For each such pair
(i,7) € &, this partitions the features into four sets P
’Pij, which are unique to each agent, and ’P and ’P” ,
which correspond to shared features measured 1ndependently
by both agents. The number of such covisible features
between the pair is denoted m;;. The map-based frame
alignment then solves for the updated vehicle poses together
with the positions of these shared features, using the pairwise
constraints. For each communicating pair of agents with
covisible features, we jointly refine their poses and the shared
landmarks by solving a nonlinear least-squares problem. This
takes the standard form used in landmark-based SLAM [18],
where residuals capture deviations from pose priors and
feature measurement consistency. The resulting optimization
problem is

Mij
: 2 2 2
min 3 rnallgs+ 30 3 (Irmanlizy + el )
iy (i,5)€€ k=1

“)
where the first summation penalizes the pose prior residuals
rp,; for each agent ¢ € V, weighted by the inverse of
the pose covariance X, ; provided by the VIO estimator.
The second term accumulates the measurement residuals
Tm,,k and 7y ;5 for each covisible feature £ observed by
a communicating agent pair (i,7) € &, weighted by the
corresponding feature measurement covariances X ; and
Ym,j. The notation ||r[|4_, := "X ~!r denotes the squared
Mahalanobis norm.



The decision variable is defined as

O ={&}icv U {Py;{k}(i,j)es,kzl..ml_ﬂ )]

which consists of the pose perturbations &; € RS for each
agent 7 € ), parameterizing corrections to the estimated
pose T, P, and the 3D positions ’Pf;/ i of landmarks £
observed by both agents i and j, expressed in the consensus
world frame. The updated pose is obtained by applying a left
perturbation to the estimate,

TV = explen) TV,

where exp(-) denotes the matrix exponential mapping from
s¢(3) to SE(3).

Since &; = 0 when the pose error is zero, the prior residual
for agent ¢ is defined as

Tpi = Ez (6)

The measurement residuals for a covisible feature k& between
agents ¢ and j are

B, B, B,
g = REWpl  + 65 — iy
5Ty 17, ij,k (7)
B;W, W B;W _ =B,
Tmgk = B P+ — iy,

where RPW and t%W transform world-frame points into
body frame B;, and ﬁgik denotes the observed position in

B;. Linearizing about the current estimated pose,

. ~ PBW, W s B,W P ~B,;
Tmie & BT P+t + ek &~ Pijno

= g = —RBW 1,4 —S(pgk)}. ®)
£:=0

The residual for agent j is defined analogously.

Solving (4) with decision variables in (5) yields corrected
poses for all communicating agents and a fused map of
covisible features, {’Pf;/ }(i’j)eg, expressed in the consensus
world frame. The singly observed features can also be
transformed into this frame using the corrected poses using

= B; ) .
’Px/ = .RVVBI ,P” + tWBl, Vie V.

The shared feature map used for planning is then obtained
as the union

PW=<(U PZVJV) U <U7>Xf>.

ij)€E i€V
B. Trajectory optimization

We adopt a trajectory selection framework similar to [15],
where candidate minimum-jerk trajectories are generated
following [19]. The procedure is summarized in Algorithm 1,
where each candidate trajectory is scored using (1), with
the lowest-cost feasible, collision-free trajectory selected.
Collision avoidance can be achieved with onboard perception
algorithms such as [20].

At each planning step for agent ¢, we assume that the
latest planned trajectories of all other agents j € V' \ {i} are

Algorithm 1 Sampling-Based Trajectory Optimization

input: D;, TBWi, Fi(O), PW, {l“j(t)}jev\{i}, Sa.i
output: I'/(¢), or undefined (failure)
1: function FINDHIGHESTREWARDTRAJECTORY

2: T} (t) + undefined with Reward (T} (¢)) = —o0
3: while computation time not exceeded do

4: I'; .(t) < GETCANDIDATETRAJ [19]

5: if Reward(T; .(¢)) > Reward(I'; (¢)) then
6: if ISDYNAMICALLYFEAS(T; (¢)) then
7 if ISCOLLISIONFREE(T'; .(¢), D;) then
8: Ti(t) <« T c(t)

9: end if

10: end if

11: end if

12: end while

13: return I'} (t)

14: end function

available through communication. A set of ny,; candidate tra-
jectories for agent 7 is generated, denoted {T'; .(¢)} . . Each
trajectory I'; .(¢) is discretized into a sequence of predicted
poses {TZ‘;Bi e Similarly, the communicated trajectories
I';(t) from other agents are sampled into {TTW B i
Here, ¢ indexes candidate trajectories and 7 indexes the
discretized poses along each trajectory. These pose sequences
are then used to compute the perception-based reward Rper
described in Section I'V-C.

T=1

C. Trajectory reward

1) Goal progress reward: The goal progress reward en-
courages the agent to reduce its distance to the target as
efficiently as possible. Following [15], we define

Isc.. = s(0)| = lIsc.i —s(T)
T )

where the numerator represents the decrease in distance to
the goal over the trajectory, and the division by 7" normalizes
this reduction by the trajectory duration. A higher reward is
obtained when the agent moves closer to its goal at a faster
rate, while trajectories that deviate from the goal or make
little progress yield lower values.

2) Information-based perception reward: The perception
reward captures the expected information gain from visual
observations, thereby encouraging trajectories that improve
localization accuracy. We formulate this reward using a
Fisher information-based framework [21], which quantifies
how feature visibility and inter-agent covisibility reduce state
uncertainty. At each future time step, assuming the agents
solve the problem in (4), two sources of information are
considered: (i) the contribution of independent VIO output,
obtained by tracking a history of 2D features, and (ii) the
contribution of covisible 3D feature measurements shared
between agents, represented by the measurement terms.

The prior-related information gain follows the formulation
in [15], which approximates the contribution of feature tracks
to pose refinement. At a sampled pose 7 of agent i, let m,

Rgoal,i -




denote the number of features visible in the camera. Each
feature k has a corresponding 2D measurement b; , 5, and a
3D world position pZV. Expressed in the body frame B;, the
feature position is

B, _ 1..B: B; B; 1T
pi,T,k: - [Ii,‘nk’ yi,T,k:’ Zi,T,k]

The projection model then gives

LB yBi T
i,7,k 1,7,k
b'L,T,k = fm B; + ¢y fy B + Cy )
1,7,k Zi,‘r,k’

where f, and f, are focal lengths and c, and c, are the
principal point offsets. The estimated body pose at this time
is given by T:%W  and we introduce a perturbation &; applied
via left multiplication. The pose refinement problem can then
be expressed as

b;.-.1, — proj( exp(&)TP "V p)) (

)
i

mr
¥ = arg min

¢ = argmi ;
which seeks the perturbation &; that minimizes reprojection
error over the m.- visible features. This formulation provides
a local approximation of the VIO update step, capturing
the information contribution of 2D feature tracks to pose
estimation.

Following [14], [15], the Fisher information matrix for
agent ¢ at sampled pose 7 is
=x-!

Psi,T

= Jg,r Zpir Jeir ©)

Aprior,i,r byi,r

where J¢, - is the Jacobian of the reprojection residuals with
respect to the perturbation &;, and Xy ; » is the covariance
of the 2D feature measurements visible at pose 7. For each
feature k, the Jacobian is defined as

6bi,7’,k
Jei k= o€,

where pPi, is the feature position in the body frame B;
and b; . ;; its image projection. The measurement covariance
Yp,i,7 accounts for both anisotropic motion blur along the
feature’s image-plane velocity and isotropic sensor noise.
The detailed construction of X ;- and J¢, . follows [15],
where feature velocities are derived from the candidate
trajectory velocities v; .(t). The resulting Xy ; , is block-
diagonal over all m; . features observed at pose 7.

Expression (9) therefore approximates the information
associated with the prior term in (4) at a sampled future
pose, quantifying the expected contribution of independent
VIO to the evolution of the prior uncertainty ¥¢;.

For inter-agent perception, we account for the information
gain from the measurement terms in (4), which arise from
pairwise covisibility of 3D features. The information contri-
bution of a shared feature k£ observed by agent ¢ at sampled
pose T is

Ameas,i,‘r,k: = J£7k—r E;}Z ngm

where J{ ; is the Jacobian of the feature residual with
respect to &; derived in (8), and Xy, ; is the covariance of
the 3D feature measurement in frame B;. Summing over all
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Fig. 3: Simple alignment example. The proposed algorithm
corrects the poses of two neighboring vehicles using shared
feature information. A systematic offset is injected into
the feature positions for clarity in illustrating the effect of
alignment.

shared features visible at pose 7, and assuming independent
measurement noise across features gives

zy

Ameas,i,-r = ZAmeas,i,T,k~ (10)
k=1

Since we are interested in decentralized planning for agent 4,
the total information matrix at pose 7 is constructed from the
prior and measurement terms derived in (9) and (10):
Ai,-r = Aprior,i,‘r + Ameas,i,r' (11)

Finally, we quantify the perception-based reward using the
log-determinant of the information matrix, which provides

a measure of the information content of the trajectory by
penalizing large uncertainty volumes

Mposes

log det(A; 7 ),

Rperc,i = (12)

poses

where the information volume is quantified and normalized
by nposes to ensure fair comparison between trajectories
of different lengths, thereby encouraging planning toward
trajectories that improve localization performance.

V. RESULTS

In this section, we evaluate the proposed multi-agent
planning framework using controlled simulations and dataset
example. Results include qualitative illustrations and quanti-
tative comparisons against baseline methods.
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Fig. 4: Visualization of individual reward terms in trajec-
tory selection. The optimal trajectory selected by the goal
progress reward moves directly toward the goal, while the
trajectory selected by the perception reward tries to maximize
feature visibility.

A. Frame alignment example

We first demonstrate the frame alignment procedure with
a simple two-agent example. The purpose of alignment is
to anchor the relative pose between agents, leading to a
collective and coupled vision drift. This mitigates unbounded
divergence of the relative formation and allows a unified
planning map across agents. To illustrate this, we inject
systematic errors into the shared features, as shown in Fig. 3.
Before alignment, the features observed by the left agent are
biased to the left in its believed world frame, while those
observed by the right agent are biased to the right. After
solving the alignment problem, the transformations between
the individual agent frames and the consensus world frame
are estimated, resulting in a consistent fused map. The top-
down and 3D views in Fig. 3 show how landmarks from both
agents are brought into alignment. The final union of the
landmarks (blue, red, and black points) forms the set ’PW,
which can be subsequently used for multi-agent planning.

B. Planning reward contribution

We qualitatively illustrate how the proposed reward terms
influence trajectory selection. For this example, we examine
the single-step planning problem of an agent at a given
instance in an environment with a floor and a wall containing
features, as shown in Fig. 4. The known planned trajectory
of its neighbor is shown in purple. Candidate trajectories
are generated using the minimum-jerk method of [19], and
the optimal one is selected following Algorithm 1. Fig. 4
shows the perception and progress rewards for 500 candi-
dates, whose weighted sum defines the objective in (1). The
perception-aware term steers the vehicle toward feature-rich
regions, while the progress term favors faster goal advance-
ment. With appropriate weighting, the selected trajectory
achieves both efficient goal progress and improved estimator
robustness.

C. Shared perception example

We illustrate the benefit of sharing feature information
through a simple example. Fig. 5 shows two agents in an
environment where features are unevenly distributed, with a
large region on the left containing no features. Such texture-
sparse areas often cause state estimation to degrade or fail.
At each planning step, agents are restricted to using only
the features that lie within their own field of view or that
of a communicating neighbor. When the agents share their
observations, the left agent can leverage the features visible
to the right agent and plan a trajectory toward a feature-rich
region. In contrast, when using only its own map (with the
same reward function and initial conditions), the left agent
enters the feature-sparse region and remains there without
observations, since it lacks awareness of the features on
the right. In practice, following this red trajectory would
likely cause the VIO to fail due to the absence of trackable
features. This example highlights how information sharing
helps agents avoid poorly observable areas and maintain
robust state estimation.

D. Frame alignment with flight data

We evaluate the proposed alignment module on a custom
dataset collected from two UAVs performing a controlled
hover experiment. Fig. 6 shows the dataset prior to error
injection, with VIO trajectories and tracked feature points.
The vehicles maintain a nominal 0.6 m separation along the
z-axis, each equipped with an Intel RealSense D455 camera
and running OpenVINS independently on the stereo feed.
Motion-capture data is recorded as ground truth. At every
step, the agents exchange their local feature maps, which
are aligned to form a consistent shared representation. This
setup allows us to assess how alignment corrects relative
pose errors and recovers inter-agent geometry. Table II
reports the RMSE of the inter-agent separation, averaged
over the 30-second stationary hover phase of the dataset,
after injecting a 0.5 m translational drift along a single
axis, with and without alignment. Across all three directions,
alignment reduces the error by about 60 %, demonstrating
its effectiveness in mitigating relative drift.
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Fig. 5: Comparison of planning with and without shared
feature information (top view). Blue and red lines show
agent trajectories. With information sharing (left), the red
agent avoids the featureless region by using its neighbor’s
observations, whereas without sharing (right) it enters the
feature-less area and fails.
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Fig. 6: Illustration of the UAV motion paths from our dataset.
Two UAVs were initialized with a nominal 0.6 m separation
along the x-axis, and manually moved into place before
beginning a stationary hover. During this period, the agents
independently run OpenVINS and exchange feature maps at
each timestep for alignment.

E. Multi-agent receding-horizon planning evaluation

Finally, we evaluate the proposed framework in a receding-
horizon setting, where each agent replans periodically and
communicates its planned horizon to neighbors. Fig. 7 illus-
trates results in three representative environments designed to
mimic realistic deployment scenarios for multi-UAV systems.
Visible features and covisible features between agents are
highlighted to show the perception-aware behavior of the
planner. In each experiment, trajectories for both agents
are planned using the proposed framework. We generate
Ny = 100 candidate trajectories per planning step, each
sampled at npeses = 10 intermediate poses. The trajectory

TABLE II: RMSE of inter-agent separation distance d(t) =
ls1(t) — sa(t)|| before and after correction, under 0.5m
injected translational drift.

Drift Direction RMSE OId (m) RMSE New (m) % Reduction

X 0.510 0.212 583
Y 0.165 0.058 65.0
V4 0.219 0.082 62.7

TABLE III: Results over 100 runs (mean values). “Visible”
and “Covisible” are feature counts; “Error A/B” are final
position errors of the two agents.

Case Method # Visible # Covisible Error A Error B
1 perception-agnostic 149 18 0.52 0.56
perception-aware 169 30 0.80 0.56
2 perception-agnostic 132 0 0.23 0.24
perception-aware 141 0 0.39 0.50
3 perception-agnostic 43 3 1.07 1.06
i perception-aware 72 0.96 1.01

endpoints are sampled within the agent’s field of view,
following the procedure of Fig. 4, with durations drawn
from T € [1,3] s. Once the optimal trajectory is selected,
its polynomial representation is shared with the other agent,
and the trajectory is executed for a short horizon of £ = 0.1 s
before replanning.

Table III summarizes the quantitative outcomes, with each
trajectory simulation repeated 100 times. The number of
visible features is used as a proxy for estimator robustness, as
each adds an independent constraint to the Fisher information
matrix. While spatial distribution also matters, feature count
correlates strongly with estimation accuracy. Additionally,
since features are generated uniformly in our simulations,
this metric remains reliable without pathological clustering
cases. Across all three scenarios, the proposed approach
significantly increases both visible and covisible features
while maintaining comparable goal-reaching performance.
Across all three cases, perception-aware planning increases
the number of visible and covisible features, improving the
quality of observations. However, this comes with a modest
increase in final position error in Case 2 and for one agent
in Case 1. In Case 3 and for the other agent in Case 1, goal
accuracy is maintained or improved. Overall, these results
show that the perception-aware reward consistently enhances
feature observability and estimator robustness, while only
trading off goal accuracy in some scenarios.

VI. CONCLUSION

We presented a decentralized planning framework that
incorporates perception quality into trajectory optimization
for multi-UAV systems. The framework aligns VIO outputs
across agents to build a consistent shared map, which is
then used to plan perception-aware trajectories in a receding-
horizon fashion. Simulations show that our approach in-
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Fig. 7: Receding-horizon planning results across three environments: (a) room with a central obstacle, (b) hallway with
structured features, (c) unstructured outdoor terrain. Red and blue lines show the agents’ trajectories; red and blue points
are features observed uniquely by each agent; purple points are shared features observed by both agents simultaneously.

creases visible and covisible features, improves coordina-
tion, and maintains goal-reaching performance compared to
perception-agnostic baselines. Future work includes exper-
imental validation, ablation studies, modeling anisotropic
landmark uncertainties from the camera projection model,
incorporating formation objectives into the planning cost, and
scaling to larger teams to further improve coordination and
robustness.
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